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Abstract
An extensive study of spectral shell models with possibilities for application to
fusion plasmas is discussed. A set of shell models addressing various aspects of
the characteristics of fusion plasmas have been derived. Difficulties associated
with plasma medium, namely its intrinsic excitability, and importance of
mescals have been discussed. The numerical implementation of shell models is
discussed. It was observed that depending on the parameter regime, they may
lead to steady state or display characteristics of predator–prey dynamics.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

1.1. Background

Plasma micro-turbulence plays a crucial role in today’s fusion devices since the transport
in these devices is dominated by turbulent processes. It is well known that there are certain
similarities between neutral fluid turbulence and plasma turbulence. It is also known that certain
simplifying assumptions regularly invoked in the theoretical studies of fluid turbulence, such
as isotropy, homogeneity and the locality of the cascade processes, are indeed incompatible
with plasma turbulence. Nevertheless, various statistical methods developed for describing
fluid turbulence are used also for plasma turbulence. Likewise, physical insight obtained from
studying fluid turbulence is widely applied to understanding plasma turbulence. In some cases,
where the similarity is of an essential nature, such insight is invaluable as it provides a simple
understanding of the behavior of a complex system. In other cases, where the differences are
more essential, the insight from fluid turbulence is only of marginal utility.

Turbulence spectrum in plasma turbulence is generally accepted to be an important
measure. It is important, first and foremost, because it can be measured directly [1–4],
and computed in numerical simulations [5–7], where detailed theories exist, that link the
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quasi-linear spectrum to the balance between linear growth and Compton scattering [8, 9].
Fluctuation spectrum readily contains the information leading to turbulent diffusion (e.g.χi, the
turbulent heat diffusivity) under reasonable assumptions, providing, in addition, a description
of scales that contribute to this transport. It is commonly invoked as part of the validation metric
in the context of validation and verification studies [10]. It is also one of the few quantities for
which detailed theories predicting power law solutions exist in neutral fluids [11].

Common wisdom from fluid turbulence suggests that a power law turbulence spectrum
in an ‘inertial range’—defined in general as a range of scales, for which drive and damping
are unimportant—occurs mainly due to forward or inverse cascades of conserved quantities,
depending on the type of turbulence [12]. This local cascade picture describes primarily the
effects of the nonentities.

In the context of plasma physics, it is not clear if such a picture is applicable, even as a
qualitative tool for understanding. The free energy source in fusion plasmas usually comes
from the gradients of background profiles of density, temperature, etc. This leads to energy
injection, via micro-instabilities, at a scale small compared with the size of the device, and
not well localized in k-space. Thus, these instabilities can affect the form of the spectrum in a
range of scales. Furthermore, for a given set of profiles, it is common to have multiple modes of
turbulence driven at various different scales (ion temperature gradient (ITG) driven modes [13],
trapped electron modes (TEMs) [14], electron temperature gradient (ETG) driven modes [15],
etc) coexisting together. It is difficult in real experimental situations to disentangle these
different types of instabilities to see whether there is indeed a local cascade physics somewhere
in the background imposed by the structure of the non-linearities.

On the other hand, interactions with large scale modes (e.g. zonal flows) that are linearly
stable, may play the role of a ‘sink’ for the drift turbulence acting on a wide range of scales.
Kinetic effects such as Landau damping also provide sinks that are not limited to small scales
and are naturally anisotropic. These different dynamical effects make any range we observe in
plasma turbulence act like a ‘dissipative range’ of neutral fluid turbulence, with a superimposed
‘driving range’ on top of it. In other words, the idea of a cascade may still be useful, but only
as an intellectual tool that allows us to reduce the information contained in the full dynamics
to conceptual parts that can be understood, and not as a directly observable phenomenon in a
wide range of scales as in neutral fluids or astrophysical plasmas.

In this work, we borrow the idea of using shell models to describe the evolution of
turbulence spectrum [16] from fluid turbulence and try to develop it to a level where it can be
applied to plasma turbulence. Our purpose here is not to write a full description of plasma
turbulence using shell models, but to propose a model, simple enough that the effects of each
of its basic physical ingredients (such as energy injection or non-linear coupling leading to
cascade) can be understood in isolation, but complex enough that it includes at least some of the
essential ingredients to be applicable to plasma turbulence. In this paper, for local interactions,
we focus on fully developed turbulence due to the fact that it is closer to the standard case
studied in neutral fluid turbulence. We leave the question of transition to turbulence and ‘weak
turbulence’ regimes (where wave–particle interactions also play an important role) to a future
study. We use the weak turbulence form for the disparate scale interactions, which is consistent
with the basic idea that weak turbulence is usually dominated by such interactions, i.e. those
with zonal flows, convective cells or geodesic acoustic modes (GAMs) [17].

In section 2 we start with the Hasegawa–Mima (H–M) system as the simplest example. We
derive a shell model for the H–M system in the absence of linear drive where the assumption
of isotropy can be justified. Then, we introduce linear drive and meso-scale structures for
this simple system. Then in section 3, we look at the 2 field model of Hasegawa and
Wakatani. Again, we first derive the simple shell model and add drive and meso-scales

2



Plasma Phys. Control. Fusion 52 (2010) 045002 Ö D Gürcan et al

later on. In section 4 we generalize these findings in the form of a model of isolated potential
vorticity (PV) evolution and comment on the resulting steady state spectra. We discuss
numerical results corresponding to various implementations of each of these models and their
dynamics.

2. Shell model for drift waves

In this section we derive a simple shell model that describes drift wave turbulence. We
demonstrate the derivation in this simple case in some detail in order to provide an introduction
to the method that is used throughout the paper. The derivations of the shell models in the later
sections follow exactly the same logical pattern.

Here, we start by assuming that the turbulence is isotropic and that there is an inertial
range ‘far’ from sources and sinks. This should be seen as a first step in building a working
shell model. Since these assumptions may not in fact be justified for plasma turbulence, we
will later show what they actually correspond to or how to relax them.

2.1. Hasegawa–Mima shell model

As the first step in our formulation, we use the simplest single field model, the H–M model [18],
in order to describe the evolution of drift wave turbulence:

∂t (1 − ∇2)# + ∂y# = ẑ × ∇# · ∇∇2#. (1)

We use slab geometry, where x corresponds to radial and y to bi-normal (ẑ × r̂)
directions (sometimes taken simply as the poloidal direction) and z is along the field
line. We use a normalization such that the mixing length value is set to 1 (i.e. # =
(eφ′/Te/ρs/Ln), t = (ρs/Ln)&i t

′ and x = x′/ρs where primed variables are in physical
units). In order to derive a shell model of H–M equation, we take the Fourier transform
of (1):

∂t#k +
iky

1 + k2
#k = 1

2

∑

p+q+k=0

(
ẑ × p · q(p2 − q2)

1 + k2

)
#∗

p#
∗
q (2)

and define the shell variable

#n =
[

1
(1 + k2

n)

∫ 2π

0
dαk

∫ kn+1

kn

〈
|#̃k|2(1 + k2)

〉
k dk

]1/2

, (3)

where k is the magnitude of the wave-vector and 〈·〉 denote the average over the fluctuations
in a quasi-steady state. The limits in (3) are selected by taking circular ‘shells’ in k-
space such that each shell is described by the magnitude of its wave-number kn = gnk0

(where g > 1 is a measure of logarithmic distance among shells). We use the notation #n

consistently throughout the paper to indicate the ‘shell variable’, the variable indicating the
total energy in a given shell as in figure 1. The shell variable is defined in the above form
because the energy in an infinitesimal shell of thickness dk in two dimensions is given by
E(k) =

∫ 2π
0 dαk

〈
|#̃k|2(1 + k2)

〉
k. Thus, the energy in a shell of finite thickness corresponds

to En =
∫ kn+1

kn
E(k) dk, which we can write as En ≡ |#n|2(1 + k2

n).
In fact, the exact form of the shell variable is not very important. However its dimension

and the fact that it is integrated over the angular variable αk ≡ atan(kθ/kr) are important for
a proper interpretation of the result in terms of conserved quantities. For isotropic turbulence,
〈|#̃k|2(1 + k2)〉 is independent of αk and the integration simply gives 2π . The variable #n can
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Figure 1. The basic geometry of the shell models.

be defined even if the turbulence is anisotropic; however in that case, it only corresponds to
the isotropic component (i.e. the ‘monopole’ in a multipole expansion) of turbulence spectra.

We observe from (2) that:

(i) The interaction coefficient vanishes for |q| ≈ |p|.
(ii) The interaction is quadratic.

If we assume the interactions are local in k-space, and that the order of the non-linearity is
preserved, we can in general write

∂t#n =
2∑

m=−2

2∑

*=−2

Anm*#n+m#n+*, (4)

where |kn+m ± kn+*| = kn (i.e. the wavenumbers have to match so that a non-linear interaction
can take place). Some elements of Anm* vanish due to this condition. For instance, if we
consider (taking g = 2 for simplicity) kn+2 ∈ [4k, 8k] ± kn−2 ∈ [k/4, k/2], this has no
intersection with kn ∈ [k, 2k]. Thus, a wave-vector from the shell labeled by n + 2 and a
wavenumber from the shell labeled by n − 2, cannot drive non-linearly a wavenumber which
falls in the shell labeled by n. This implies therefore that An,+2,−2 has to vanish.

As we noted, if |q| ≈ |p|, the interaction coefficient vanishes. In contrast if |p| ≈ |k|
or if |q| ≈ |k|, the interaction coefficient itself [e.g. Mk,p,q = ẑ × p · q(p2 − q2)/(1 + k2)]
does not vanish. However, when we focus on such an interaction (e.g. for simplicity consider
the case p = kx̂, q = kx̂ + kŷ and k = kŷ), and consider energy transfer for demonstration,
we see that Tk,p,q(E) = −k4#p#q, Tp,q,k(E) = k4#q#k whereas Tq,k,p(E) = 0 (where
Tk,p,q(E) denotes transfer of energy from p and q into k). In other words, there exists a rather
efficient interaction involving wavenumbers of magnitude k and

√
2k, driving a wavenumber

with magnitude k. However when integrated over the shell, this interaction does not lead to
energy transfer among different shells (i.e. it transfers energy among p = kx̂ and k = kŷ, both
of which are in the same shell). Instead, such an interaction simply isotropizes the energy (or
enstrophy) within a given shell n. This fact, which can be expressed as ‘interactions involving
wavenumbers of same magnitude do not lead to transfer across shells’, gives An0* = Anm0 = 0.
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Similarly, all the diagonal components of Anm* (which is rank 2 for given n) must also
vanish because of the observation that the interaction coefficient vanishes if q ≈ p. This
leaves us only those coefficients corresponding to the modes which can satisfy the resonance
condition, are different from each other and are different from kn. Hence (4) becomes

∂t#n = an#n−2#n−1 + bn#n−1#n+1 + cn#n+1#n+2. (5)

If we go through each term on the right-hand side, we see that they correspond to interactions

kn−2 ∈ [k/4, k/2] + kn−1 ∈ [k/2, k] = kn ∈ [k, 2k],

kn+1 ∈ [2k, 4k] − kn−1 ∈ [k/2, k] = kn ∈ [k, 2k]

and

kn+2 ∈ [4k, 8k] − kn+1 ∈ [2k, 4k] = kn ∈ [k, 2k],

respectively.
The forms of the truncated interaction coefficients in (5) as functions of shell wavenumber

kn can be determined from the initial form of the interaction coefficient as defined in (2) in
terms of interacting wave-vectors. They are

an = α
k4
n

1 + k2
n

(g2 − 1)

g7
, bn = β

k4
n

1 + k2
n

(g4 − 1)

g2
(6)

and

cn = γ
k4
n

1 + k2
n

(g2 − 1)g5. (7)

In addition, since the initial system conserves total energy and total potential enstrophy, we
argue that the local approximation employed in (5) must also conserve these quantities 2. This
will act as a constraint on the coefficients α, β and γ , and by doing so, define the spectrum in
the ‘inertial range’.

2.1.1. Energy conservation. Total fluctuation energy as defined by

E =
∫

dk|#̃k|2(1 + k2)

is conserved by the H–M system (i.e. equation (2)). Thus, the same quantity written in terms
of the shell variables

E =
∑

n

#2
n(1 + k2

n)

has to be conserved by the corresponding shell model (i.e. equation (5)). Multiplying (5) by
(1 + k2

n)#n summing over all n, we obtain the condition

dE

dt
=

∑

n

(1 + k2
n)[an#n−2#n−1#n + bn#n−1#n+1#n + cn#n+1#n+2#n],

which has to vanish. By re-arranging the sum on the right-hand side, we can see that the energy
is conserved if

an+1(1 + k2
n+1) + bn(1 + k2

n) + cn−1(1 + k2
n−1) = 0.

Using kn+1 = gkn and kn−1 = g−1kn, we can write this in terms of the coefficients (6) and
(7) as

αg−3 + βg−2(g2 + 1) + γg = 0. (8)
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2.1.2. Enstrophy conservation. For the pure H–M system, another conserved quantity is
enstrophy, which is defined as

W =
∫

dk|#̃k|2k2(1 + k2) =
∑

n

#2
n(1 + k2

n)k
2
n.

Multiplying (5) by (1 + k2
n)k

2
n#n, summing over all n and re-arranging the resulting sum, we

find that the total fluctuation potential enstrophy is conserved if

an+1(1 + k2
n+1)k

2
n+1 + bn(1 + k2

n)k
2
n + cn−1(1 + k2

n−1)k
2
n−1 = 0

and in terms of coefficient α, β and γ , this gives

αg−1 + βg−2(g2 + 1) + γg−1 = 0. (9)

Taken together with equation (8), this implies

β = −αg−1 and γ = αg−2.

This condition, on these otherwise arbitrary coefficients, gives us a severely truncated system
where the scales (represented by shells) non-linearly interact among themselves locally and
in the same way as the original H–M system does, and preserve energy and enstrophy while
doing so.

2.1.3. The model and the steady state spectra. The simple shell model for the pure H–M
system, conserving energy and enstrophy can be written as

∂#n

∂t
= α

k4
n(g

2 − 1)

1 + k2
n

[g−7#n−2#n−1 − (g2 + 1)g−3#n−1#n+1 + g3#n+1#n+2]. (10)

This describes only the local interactions in some hypothetical ‘inertial range’. This is
effectively the model, introduced in [19]. There is neither any drive nor any damping in
this system. It is obviously overly simple. However, it allows us to isolate the effect of local
interactions in a drift wave type nonlinearity. Taking the steady state limit, assuming a power
law form (i.e. #n ∝ kλn), substituting into (10) and noting kλn+m = gmλkλn , we find

[g−7g−3λ − (g2 + 1)g−3 + g3+3λ] = 0.

It is easy to see that this can be satisfied by λ = −4/3 or λ = −2. This means we have the
two possible steady state solutions

#n ∝ k−2
n and #n ∝ k−4/3

n

for this system. These actually correspond to the well-known Kraichnan–Kolmogorov dual
cascade solutions, which, when written in terms of |#(k)|2 are

|#k|2 ∝ k−6 and |#k|2 ∝ k−14/3.

If one computes the energy density E(k) as defined for the Euler system using the above
forms for |#k|2’s (i.e. E(k) ≈ k3|#k|2) one would in fact obtain the more familiar forms with
powers −5/3 and −3. However, for the H–M system the definition of the energy density also
involves a (1 + k2) and therefore it does not give a perfect power law. Because of this, we will
consistently use fluctuation spectra as given above in this paper, and not the energy density
spectra.

2.1.4. Realizibility and phase dynamics. The shell variable #n as defined in (3) does not
have a well-defined phase. In other words, one can take #n to be either the positive or the

6
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negative root of the square root in (3), and the value of energy would not change. As a result its
evolution given by equation (10) does not guarantee positive definiteness. Let us take #n > 0
for all n with an initial distribution such that #n ∼ #n−2 ∼ #n+2 ∼ 0 and #n+1 ∼ #n−1 . 0.
In this case, ∂#n/∂t will be negative, and since #n ∼ 0, #n will become negative in the next
time step.

Because of this, it is common to generalize #n to include complex phase, and allow the
model equations to evolve phase as well as amplitude. For instance, one can introduce

∂#n

∂t
= α

k4
n(g

2 − 1)

1 + k2
n

[g−7#n−2#n−1 − (g2 + 1)g−3#∗
n−1#n+1 + g3#∗

n+1#n+2]. (11)

Here the complex conjugates are selected such that if the contributing k is negative (e.g. n + 1
in kn = kn+2 −kn+1) its shell variable is conjugated, since for instance #∗

n+1 ∼ (An+1eikn+1x)∗ ∼
An+1e−ikn+1x , whereas if the contributing k is positive (e.g. n − 1 or n − 2 in kn = kn−1 + kn−2),
it is not. In contrast, the Glezder–Ohkitani–Yamada (GOY) model [20] has all the terms on
the right-hand side conjugated. Note that other alternatives exist in the literature [21]. The
generalization of the shell variable as a complex variable and the introduction of phase evolution
allow shell models to be implemented numerically more easily, since for small values of #n,
a change in the sign simply leads to a change in the phase dynamics and this does not change
the conserved quantities.

Also, equation (11) remains invariant under a transformation of the form #n = #neiθn , if
θn+1 −θn−1 −θn = 0. This suggests that it has the same properties, in terms of phase dynamics,
as the model of [21]. Note that for the steady state analytical solutions, realizibility is not an
issue. In that case, one can safely disregard the phase dynamics and consider #n as a positive
definite quantity.

2.1.5. The continuum limit. We find it surprising that the continuum limits of shell models
are not widely studied, even in fluid dynamics. Going through the literature one finds that the
main reference used in neutral fluids literature for the continuum limit of the GOY model is
‘unpublished’ [22, 23]. Therefore, we decided to provide a detailed derivation of the continuum
limit of the above shell model in appendix A, which we will use as a basic reference when we
deal with more complicated shell models. The result in compact notation is

∂#(k)

∂t
= 3αε7/2

(1 + k2)#(k)

1
k

∂

∂k

(
k2#(k)

∂

∂k
[k6#(k)2]

)
, (12)

where #(kn) ≡ #n/
√

2πkn/kn as /kn goes to zero. Here α is the coefficient of interaction
which denotes the strength of the non-linearity and ε is the small parameter of the shell spacing
(i.e. g = 1 + ε, see appendix A for details). This is the continuum limit of the shell model for
the Hasegawa–Mima system. If we take the Euler limit [i.e. (1 + k2) → k2] and use the energy
within an infinitesimal shell for the Euler system [i.e. E(k) = k3#(k)2], we get

∂E

∂t
= ∂

∂k

(
D

√
kE

∂

∂k
[k3E]

)
,

where D = 3αε7/2. This is nothing but the first order ‘differential approximation model’
(DAM) for the Euler system [24, 25]. It would be interesting to continue the expansion and
see if the agreement persists in higher orders.

2.2. Disparate scale interactions

While the possibility of excitation of large scale flow structures from small scale plasma
turbulence via parametric and modulational instabilities has been known for a long time [26],

7
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the key role these flow structures play in plasma transport has been recognized in the last few
decades [17]. Here by large scale flows, we usually denote zonal flows; however, in general
they correspond to k‖ = 0 modes, which may be zonal flows, GAMs or non-linear streamers.
Since these structures play an important role in transport, their effect on wavenumber and
frequency spectrum of micro-turbulence is also expected to be important. Including the effect
of large scale flows in the shell model picture is non-trivial. First, one must choose the correct
invariants that the full system consisting of fluctuations and the large scale flows conserve.

In order to do that, we suggest the following simple, self-consistent system of equations,
on which we base our shell model derivation [27, 28]:

(∂t + ẑ × ∇# · ∇)(#̃ − ∇2#̃) + ẑ × ∇#̃ · ∇(n0(x) − ∇2#)

= (ẑ × ∇#̃ · ∇∇2#̃ − 〈ẑ × ∇#̃ · ∇∇2#̃〉), (13)

∂t (n0(x) − ∇2#) = 〈ẑ × ∇#̃ · ∇∇2#̃〉, (14)

where as usual ẑ is along the direction of the background magnetic field. These two equations
correspond simply to the advection of PV in two dimensions [29, 30], defined for drift waves as

h ≡ h + h̃ = (n0(x) + #̃) − (∇2#̃ + ∇2#).

Here n(x) is a fixed background density profile, 〈·〉 denote an average over fluctuations, # is
the mean component (i.e. slowly evolving in time, k‖ = 0, etc) of the electrostatic potential
corresponding to the large scale flow (i.e. v ≡ ẑ × ∇#) and #̃ is the fluctuating electrostatic
field corresponding to micro-turbulence. Note that # does not appear in PV explicitly due
to the way electrons respond to fluctuations versus the mean flow. This is an important point
which affects the non-linear structure of the equations. The right-hand side of (13) describes
mode-coupling between fluctuations while the terms on the left describe interactions with
the mean flow. Note also that the fluctuation equation reduces to the H–M equation when
# = ∂t# = 0.

The disparate scale interactions as described by (13) and (14) conserve potential enstrophy:

Z ≡ 〈(∇2#)2 + (#̃ − ∇2#̃)2〉
while local interactions among fluctuations are still described by the conservation laws (and
thus by the shell model) derived earlier. In order to add an equation for the mean flow (i.e.
k‖ ≈ 0 mode) we note that in the shell model picture, the mean flow interacts with every single
shell directly (i.e. non-locally) and exchanges potential enstrophy with each shell by refracting
its wavenumber to larger k (i.e. toward shells with larger n). Using (13) and (14) , we can write
the truncated equations as

∂

∂t
# +

∑

n

an#n#n+1 + νF# = 0 (15)

and
∂#n

∂t
+ bn##n+1 + cn##n−1 = C(#n,#n), (16)

where an, bn and cn are

an = −α
k3
ng(g2 − 1)

q
, bn ≈ α

qkng(1 + g2k2
n − q2)

1 + k2
n

and

cn ≈ −gα
qkng

−1(1 + g−2k2
n − q2)

1 + k2
n

.

8
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The forms of these coefficients are determined exactly the same way as in the previous
section; however, this time using conservation of total potential enstrophy Z. In (16), C(#,#)

represents local interactions among shells in the absence of mean flows. We take this from
equation (10) since we expect the local interactions to conserve total fluctuation enstrophy as
before

C(#n,#n) ≡ α
k4
n(g

2 − 1)

1 + k2
n

[g−7#n−2#n−1 − (g2 + 1)g−3#n−1#n+1 + g3#n+1#n+2].

The resulting shell model can be written as

∂#n

∂t
+ α

qkn#

1 + k2
n

[g(1 + g2k2
n − q2)#n+1 − (1 + g−2k2

n − q2)#n−1] = C(#n,#n), (17)

∂

∂t
(q2#) = α

∑

n

qk3
ng(g2 − 1)#n#n+1 − νF q2#. (18)

This is a coupled system, describing the evolution of drift wave turbulence undergoing local
cascade and interacting with a large scale mode which evolves self-consistently with drift wave
turbulence.

2.2.1. Stationary spectrum with disparate scale interactions. We can obtain the steady state
fluctuation spectrum when disparate scale interactions dominate using (17) and considering
only the second term on the left-hand side. This gives

[g(1 − q2 + g2k2
n)#n+1 − (1 − q2 + g−2k2

n)#n−1] = 0

which has the solution

#n ∼ k
−1/2
n

(1 − q2 + k2
n)

,

or when written in terms of the fluctuation intensity, this implies (for q 1 k)

|#̃k|2 ∼ k−3

(1 − q2 + k2)2
∼ k−3

(1 + k2)2
. (19)

This is the steady state spectrum when there is a large scale mode and the disparate scale
interactions with this mode are dominant. Note that large scale here is effectively defined as
a k‖ ≈ 0 with a |k| smaller compared with the range for which we observe the turbulence.
Generally these are zonal flows. However, other meso-scale modes or external mean flows
may become dominant if zonal flows are weak or artificially suppressed.

2.2.2. Continuum limit. Repeating the continuum limit calculation of section 2.1.5 (given in
appendix A), for the model given in (17) and (18):

ε1/2k
∂#(k)

∂t
+ αε1/2 qk2#

(1 + k2)

[

2(1 − q2 + k2)k#′(k) + 3

(

1 − q2 +
7
3
k2

)

#(k)

]

= C(#,#)

which we can re-write in the form

∂#(k)

∂t
+

2αεk1/2

(1 + k2)

∂

∂k
(q#k3/2[1 − q2 + k2]#(k))

= 3αε7/2

(1 + k2)#(k)

1
k

∂

∂k

(
k2#(k)

∂

∂k
[k6#(k)2]

)
(20)

9
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and for the mean flows(
∂

∂t
+ νF

)
(q2#) = 2αq

∫ ∞

kmin

[k4#(k)2] dk.

The form of (20) is interesting, in particular in the limit q 1 k, if we write the equation
for fluctuation potential enstrophy:
∂

∂t
[(1 + k2)2#(k)2] + αε

1
k

∂

∂k
(k[k2q#(1 + k2)2#(k)2])

= 3αε7/2(1 + k2)
1
k

∂

∂k

(
k2#(k)

∂

∂k
[k6#(k)2]

)
,

or
∂

∂t
Nk + αε∇k · [k2q#Nk] = C ′(Nk, Nk) (21)

if we let Nk ≡ [(1 + k2)2#(k)2]. This equation is remarkably similar to the wave-kinetic
equation:
∂

∂t
Nk(X, t) + ∇k · [(ω − V · k)∇XNk(X, t)]

− ∇X · [(ω − V · k)∇kNk(X, t)] = C ′(Nk, Nk). (22)

In order to obtain (21) starting from (22), we would need to define

Nk ≡
∫

dαk

∫
Nk(X, t) dX

which is integrated over the k-space angular variable αk ≡ atan(kθ/kr) as well as the slow
spatial variable. Since there is no other spatial scale associated with the fluctuation spectrum,
we assert that ∫

dαk

∫
∇XNk(X, t) dX = α′εkNk

which is consistent with an assumption of scale separation (but implies a particular scaling of
the spatial gradient of intensity). Here α′ is an unknown constant. If we further assume that
small scale evolution remains sufficiently isotropic, we can indeed recover (21).

2.3. Comparison with Tore-Supra measurements

The turbulence spectrum in tokamaks can be measured using different methods. Here, we
demonstrate a standard, Ohmic, L-mode shot from Tore-Supra tokamak measured using
the Doppler reflectometer system, DifDop (figure 2). The figure shows a reasonably good
agreement between the measured spectrum and the analytical expression k−3/(1 + k2)2. Of
course, one can find better fits, with different functional forms. For instance, as one goes to
higher k, the spectrum will ultimately take the form of an exponential, which suggests that
we observe a ‘dissipation’ range. For instance in the case of disparate scale interactions and
a physical mechanism of damping that goes as γd(k) ∼ −λdk

2, one does indeed recover a
scaling: [31]

〈|̃nk|2〉 ∼ 〈|#̃k|2〉 ∼ k−3

(1 + k2)2
e−λk.

Or one can simply use an exponential function directly. However, the expression
k−3/(1 + k2) does not have any fitting parameters (apart from the fluctuation level), and can
be linked to the physical process of disparate scale interactions. Therefore its agreement
with experiment is remarkable and arguably more informative than a fit with an exponential
function, which has a fitting parameter and implies a dissipative scaling.

10
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Figure 2. Measurement of density fluctuation spectrum in a standard Ohmic discharge in Tore Supra
tokamak. The analytical formula seems to agree reasonably well with the observations. Note that
the error bars in the figure indicate the error only in the measurement of k. Here an average value
of ρs is used for normalization. An error in this would simply shift all the measured points to the
left or to the right. Note also that since there is no absolute calibration of the experimental setup
for the fluctuation level, the y-axis is effectively in arbitrary units.

3. Shell model for Hasegawa–Wakatani (H–W) system

3.1. The model

The H–W system consists of the equations
∂n

∂t
+ vn

∂#

∂y
− ηk2

‖(# − n) − Dn∇2n = −ẑ × ∇# · ∇n, (23)

∂∇2#

∂t
− ηk2

‖(# − n) − ν∇2∇2# + µ∇2# = −ẑ × ∇# · ∇∇2#. (24)

ITG or another similar model has the same basic non-linear structure, while the linear dynamics
can be very different. Here we focus on fully developed turbulence and the effects of non-linear
terms.

It is well known that the non-linear terms in the H–W system conserve kinetic energy

E =
∑

k

|#k|2k2,

internal energy

N =
∑

k

|nk|2,

enstrophy

W =
∑

k

|#k|2k4,

and the cross correlation which can be called ‘effective helicity’

H =
∑

k

Re[k2#knk].

11
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As in the previous sections, we want to derive a shell model, where the non-linear interactions
can be modeled by local couplings but still conserve these primary quantities. The shell
variables are defined as

#n ≡
[

2π
k2
n

∫ kn+1

kn

|#k|2k3 dk

]1/2

, (25)

nn ≡
[

2π
∫ kn+1

kn

|nk|2k dk

]1/2

. (26)

The standard truncation corresponding to keeping only local interactions has the form

∂nn

∂t
+ Ln(#n, nn) = an(#n−2nn−1 − #n−1nn−2) + bn(#n−1nn+1 − #n+1nn−1)

+cn(#n+1nn+2 − #n+2nn+1), (27)

∂#n

∂t
+ Lφ(#n, nn) = a′

n(#n−2#n−1) + b′
n(#n−1#n+1) + c′

n(#n+1#n+2). (28)

Comparing with the Fourier transforms of (23) and (24), we see that

an ≈ αkn−2kn−1 = αk2
ng

−3, (29)

bn ≈ βk2
n, cn ≈ γ k2

ng
3 (30)

and

a′
n ≈ α′ kn−1kn−2(k

2
n−1 − k2

n−2)

k2
n

= α′k2
n(g

2 − 1)g−7, (31)

b′
n ≈ β ′k2

n(g
4 − 1)g−2, c′

n = γ ′k2
n(g

2 − 1)g5. (32)

As usual, we use the conservation laws in order to derive relationships among these coefficients,
which leads to the shell model for the H–W system:

∂nn

∂t
+ Ln(#n, nn) = αk2

n[g−3(#n−2nn−1 − #n−1nn−2) − g−1(#n−1nn+1 − #n+1nn−1)

+g(#n+1nn+2 − #n+2nn+1)], (33)

∂#n

∂t
+ Lφ(#n, nn) = αk2

n(g
2 − 1)[g−7#n−2#n−1 − (g2 + 1)g−3#n−1#n+1

+g3(#n+1#n+2)]. (34)

We argue that the linear dynamics are important mainly for energy injection and do not play a
key role in the inertial range. Thus neglecting the linear terms and substituting #n ∝ kλn into
(34), we get λ = −4/3 or λ = −2 as in the case of pure H–M turbulence. These correspond
to the standard dual cascade spectra in 2D turbulence.

3.2. Stationary spectra of density fluctuations

We already know that the stationary spectra for # in the inertial range is either #n ∝ k
−4/3
n or

#n ∝ k−2
n . We consider these two cases separately, assuming nn ∝ k

χ
n .

12
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3.2.1. #n ∝ k
−4/3
n case. If we ignore linear dynamics and substitute#n ∝ k

−4/3
n and nn ∝ k

χ
n

into (33), we obtain

(g−χ−1/3 − g−5/3g−2χ ) − (g1/3+χ − g−7/3−χ ) + (g2χ−1/3 − gχ−5/3) = 0 (35)

since g is by definition positive and greater than one, the only way this vanishes is if a term
with a plus sign cancels a term with a minus sign. Considering each permutation, we find that
the possible values of χ that satisfy (35) are χ = −4/3, χ = −1/3 and χ = 2/3 . For |nk|2
these imply

nn ∝ k−4/3
n → |nk|2 ∝ k−14/3,

nn ∝ k−1/3
n → |nk|2 ∝ k−8/3,

nn ∝ k2/3
n → |nk|2 ∝ k−2/3.

It is interesting to note that, while the −14/3 case displays the same scaling with |#k|2 ∝ k−14/3

and thus is possible also in the near-adiabatic limit of the H–W system, the case −8/3
corresponds to the fluid limit and is in fact Kraichnan’s k−5/3 spectrum, but written for internal
energy density [i.e. F(k) = k|nk|2 ∝ k−5/3].

3.2.2. #n ∝ k−2
n case. If, on the other hand, we substitute #n ∝ k−2

n and nn ∝ k
χ
n into (33),

we obtain χ = −2, χ = 0 or χ = 2. The scalings for |nk|2 implied by this are

nn ∝ k−2
n ⇒ |nk|2 ∝ k−6,

nn ∝ k0
n ⇒ |nk|2 ∝ k−2,

nn ∝ k2
n ⇒ |nk|2 ∝ k2.

Note that while the first one corresponds to the forward energy cascade result of 2D turbulence
with adiabatic electrons, the latter is Batchelor’s passive scalar spectrum [i.e. F(k) ∝ k−1]. It
is also interesting to note that the difference between these two power laws is 4, which seems
to be a generic feature of both experimental results and of theory based on PV evolution.

3.3. Adding drive and disparate scale interactions

The simplest way to introduce linear drive into this model is to add a γn#n into (34) and a γnnn

into (33). Note that, since the shell variable does not contain any phase information, this is not
as bad an approximation as it initially seems. However, when we add drive in the presence of
an inverse cascade, we also need to consider the large scale structures and their evolution. In
fact, the question of saturation depends strongly on the saturation mechanism for these large
scale modes.

It is the total energy, enstrophy, etc of the convective cell + the drift waves that should be
conserved. It can be verified that the disparate scale interactions in the truncation given by
∂nn

∂t
= γnnn + αqkn[g−1(#nn−1 − n#n−1) − (#nn+1 − n#n+1)] + C(#, n), (36)

∂#n

∂t
= γn#n + αqk−1

n (k2
ng

−2 − q2)[g−1##n−1 − ##n+1] + C(#,#), (37)

∂

∂t
n =

∑

n

αqkn(#nnn+1 − #n+1nn), (38)

∂

∂t
# =

∑

n

α(g2 − 1)qk3
nq

−2#n#n+1 − νZF# (39)

13
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indeed conserve total internal energy N = n2 +
∑

n n2
n, total kinetic energy K = q2#

2
+

∑
n k2

n#
2
n, total enstrophy W = q4#

2
+

∑
n k4

n#
4
n, total effective helicity H = q2#n +∑

n k2
nnn#n and incidentally, also the total potential enstrophy Z = N +2H +W . Here C(#, n)

and C(#,#) describe local interactions which conserve the fluctuating energy, enstrophy, etc
and therefore are taken from (33) and (34) as

C(#, n) ≡ αk2
n{g−3(#n−2nn−1 − #n−1nn−2) − g−1(#n−1nn+1 − #n+1nn−1)

+g(#n+1nn+2 − #n+2nn+1)}, (40)

C(#,#) = αk2
n(g

2 − 1){g−7(#n−2#n−1) − (g2 + 1)g−3(#n−1#n+1) + g3(#n+1#n+2)}. (41)

4. Generalization in terms of PV

The results of sections 2.2 and 3.3 suggest that PV dynamics play a crucial role in the evolution
of fluctuation spectra. It is possible to generalize these results in terms of PV. We can form

hn = nn + k2
n#n

by multiplying (37) with k2
n and summing it with (36). The result is

∂hn

∂t
= γnhn − αqkn[(#hn+1 − h#n+1) − g−1(#hn−1 − h#n−1)] + C(#, h), (42)

where h = n + q2#. Note that here hn+1 = nn+1 + g2k2
n#

2
n+1, etc. For the local interaction

terms, we have C(#, h) = C(#, n) + k2
nC(#,#), using (40) and (41) we indeed obtain

C(#, h) ≡ αk2
n{g−3(#n−2hn−1 − #n−1hn−2) − g−1(#n−1hn+1 − #n+1hn−1)

+g(#n+1hn+2 − #n+2hn+1)}, (43)

which is exactly the same as (40), with n replaced by h. This is not really surprising since
the H–W system can be described as advection of PV, and if we only consider the non-linear
interaction term the n equation is an equation for a passive scalar. Naturally these two yield
rather similar non-linear behavior. Similarly for the large scales, the PV is defined as

h = n + q2#

whose evolution can be computed using (38) and (39) as
∂

∂t
h = α

∑

n

qkn(#nhn+1 − #n+1hn) − νZFh. (44)

Similarly the H–M with disparate scale interactions (e.g. equations (15) and (16)) can be
written in the above form if we define

hn = (1 + k2
n)#n.

Obviously, this is no coincidence. The system consisting of (42) and (44) can in fact be derived
from the general principle of PV conservation. Both the H–M and the H–W systems described
above, and more complex systems such as ITG or ETG modes (up to curvature effects), can in
fact be recast into a form of advection of PV, except that the PV for each system is different. For
instance, a simple slab-ITG model can be formulated as advection of h = n − ∇2# − P/3

(where P is pressure and 3 is the adiabaticity coefficient) [32] when curvature effects are
neglected.

If we start from
dh

dt
= 0

14
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and separate it into fluctuation, mean and background parts as

h = h0(x) + h(x, t) + h̃(x, t)

we obtain

∂h̃

∂t
+ ẑ × ∇#̄ · ∇h̃ + ẑ × ∇#̃ · ∇h − ∂y#̃

d
dx

h0(x) = ẑ × ∇#̃ · ∇h̃ − 〈ẑ × ∇#̃ · ∇h̃〉

and

∂h

∂t
= 〈ẑ × ∇#̃ · ∇h̃〉,

using the usual truncation procedure, and imposing conservation of potential enstrophy

Z = h
2

+
∑

n

h2
n

we can, in fact, derive the system of equations given in (42)– (44).
Of course, in order to actually use this system, one needs an equation for the evolution

of #, the active field, in most cases. One notable exception is the case when the interactions
with the large scale mean flows dominate over everything else. In this case, the steady state
spectrum can be computed by the balance

#[hn+1 − g−1hn−1] = 0

whose solution is hn ∝ k
−1/2
n , and this gives for the PV spectrum that

|̃hk|2 ∝ k−3

or in the limit of H–M, this gives

|#̃k|2 ∼ |̃nk|2 ∝ k−3

(1 + k2)2
. (45)

5. Numerical studies

The shell models are very useful tools suitable for numerical integration. They can be
implemented with a very low number of degrees of freedom and yet they can be used to
describe a wide range of scales, and be integrated for a relatively long time. However, since
they include a wide range of kn and #n values, they are also intrinsically stiff. This makes
their numerical implementation non-trivial. Furthermore, since the shell models involve terms
that are similar to ‘finite-difference’ representations of partial derivatives, the usual problems
related to numerical stability of finite-difference schemes also plague them. What is worse is,
since the shell model description does not really involve finite-difference representations of
continuous operators, one cannot simply replace a term that looks like a finite-difference Euler
formula with a higher order finite-difference formula. Nonetheless, we consider shell models
as valuable tools once these technicalities are attended to.

We used various methods (including implicit Crank–Nicolson scheme with operator
splitting and adaptive time step) for numerical implementation using Gnu Scientific Library
(GSL) [33]. In all the cases considered, it is the zonal flow interaction term, i.e. the term

∂hn

∂t
= −α′qkn#[ghn+1 − hn−1] (46)

that limits numerical stability properties. This is also the dominant term that defines the shape of
the steady state or oscillating spectrum. Using the similarity of this term to a central difference
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Euler representation of an advection operator we make sure that /tadv remains always small
compared with (g − 1)/α′q#, in order to guarantee stability.

In the case when the disparate scale interactions dominate, the term given in (46) leads
to negative amplitudes (consistently reversed phases) if a positive derivative in some region
is maintained by the drive. Consider for instance that #3 > #1, and #3 is driven so that
this configuration is maintained, in this case #2 will consistently experience a pull toward
the negative direction. In order to avoid this, we omit the region corresponding to the scales
between the driving scale and the large scale. This means that the local inverse cascade is
excluded when the interaction with the large scale is included. Note that this is consistent
with the physical assumption of scale separation inherent in the disparate scale interaction
picture. We use open boundary conditions on the left (#̇1 = #̇2) and either open or a power
law boundary condition on the right (i.e. #N/#N−1 = #N−1/#N−2).

Here we focus on the shell model defined in section 2.2. This model can be viewed as a
particular implementation of the general model based on PV evolution introduced in [31] and
re-derived in section 4 of this paper. The model can be run in ‘external shear flow version’ by
turning off the zonal flow equation and setting #0 = #ext or in ‘self-consistent zonal flows’
version, where the large scales are allowed to evolve dynamically, self-consistently with the
small scales. It can also be driven in two different ways: The ‘instability drive version’ (i.e.
Sn = γn#n) or ‘external drive version’ (i.e. Sn = 3n). In either case, γn or 3n are taken to be
limited to only the first few (usually 2) shells.

Numerical results can be summarized as follows. First of all, we can clearly observe that
the analytical solution (19) is reproduced by the numerical integration when the parameters are
selected such that the interactions with the large scales dominate. The time evolution of this
solution depends on model parameters and whether we use the external sheared flow version or
the dynamic zonal flows version of the model. In the case of the external shear flow version, we
see that the system simply evolves toward this fixed point, well represented by the analytical
solution (see figure 4). In contrast, the dynamic zonal flows case provides rich dynamical
behavior which can display predator–prey like oscillations (see figure 3), which may or may
not be damped to a steady state (see figures 4 and 5) depending again on parameter values.

The observation of predator–prey like oscillations is in accord with the formulation
presented in [34], and a similar phenomenon observed in gyrokinetic simulations [35] as a
result of collisional damping of zonal flows. We note that the model damping at large scales
(e.g. νF in equation (18)) plays the key role in setting the frequency and the amplitude of these
inherently non-linear oscillations.

5.1. Predator–prey oscillations

A simple physical explanation for these oscillations can be suggested by studying the
‘minimum’ shell model with two-shells + the large scale mode. In this case the shell model
reduces to a coupled set of three ordinary differential equations:

∂#1

∂t
+ αqgk

(1 + g2k2 − q2)

(1 + k2)
#

∗
#2 = γ#1, (47)

∂#2

∂t
− αqgk

(1 + k2 − q2)

(1 + g2k2)
##1 = −νk2g2#2, (48)

∂

∂t
q2# = αqk3g(g2 − 1)#∗

1#2 − νFq
2#, (49)

where k ≡ k1. Note that while #1 is being driven by the linear instability, #2 is damped.
Even though the physical meanings of the terms are different, the non-linear structures of the
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Figure 3. Spectral growth and collapse associated with predator–prey-like oscillations for the
instability drive version with dynamic zonal flows case. The model parameters are α = 20,
α = 10, γ = 4 × 10−2, ν = 10−7, νZF = 10−1 and N = 54. Here (a) shows the log versus log
plot of k-spectra at different times, while (b) shows a log versus linear plot of time evolution of
drift wave and zonal flow enstrophy and (c) is linear plot of drift wave and zonal flow enstrophies
during the whole simulation. The color codes in (a) and (b) match, so that one can see that the
time in (a) advances in the direction indicated by the arrow. The form of the spectrum during the
oscillations agree perfectly with the analytical form k−3/(1 + k2)2.

equations are essentially the same with those of the three-wave interaction equations [36]. This
kind of system is well known to display oscillation characteristics in multiple time scales. One
common behavior is a relatively rapid oscillation between #1 and #2 (where the frequency is
roughly proportional to #, which itself is modulated by these oscillations). At the same time
# acts as a slowly growing predator feeding on #1. As the level of # increases, it takes more
and more of the potential enstrophy of the #1 and thus it depletes its own source of potential
enstrophy. In the end it is the large scale damping νF, which reduces the large scale flow to
a level where #1 can grow again. This leads to the secondary oscillation. An example of the
direct numerical integration of this two-shell model is shown in figure 6, where the large scale
flow damping νF is varied as the main control parameter.

6. Results and conclusion

We have developed a number of shell models, which may be applicable to fusion plasma
systems. Focusing on local interactions for strong turbulence and interactions with zonal
flows and convective cells for weak turbulence limits, we believe that we cover a wide range
of applicability. We started from a shell model based on local interactions for the simple

17



Plasma Phys. Control. Fusion 52 (2010) 045002 Ö D Gürcan et al

Figure 4. Spectral growth and saturation for the external drive version with external shear flow
case with α = 20, α = 10, 3 = 1 × 10−1, ν = 10−4 and N = 44.

(a) (b)

Figure 5. Spectral growth and saturation for the instability drive version with dynamic zonal flows,
with α = 20, α = 10, γ = 10−2, ν = 10−6, νZF = 10−1 and N = 44.

H–M system. Taking its continuum limit, we observed that it agrees well with the DAMs
used for similar systems. Then, we included interactions with the zonal flows for a similar
system which conserves PV. When disparate scale interactions with large scales dominate, we
found a fluctuation spectrum of the form |̃nk|2 ∼ |#̃k|2 ∝ k−3/(1+k2)2 with the assumption of
adiabatic electron response. We have further computed the continuum limit of this shell model,
and verified that the part of the equation involving the interactions with the large scales had a
form very similar to the wave-kinetic equation commonly used in weak turbulence formulation.

Furthermore, we developed a shell model for the two-field H–W system. We verified
that all the standard 2D fluid spectra corresponding to velocity fluctuations (i.e. |#̃k|2 ∝
{k−14/3, k−6}) and passive scalars (|̃nk|2 ∝ {k−8/3, k−2}) can be obtained as solutions to various
limits of this H–W shell model. Finally, we generalized these observations in the form of a
PV shell model, which is in principle applicable to any model that conserves PV. In general
such models include drift instabilities such as ITG mode or models used on solar physics such
as the β-plane MHD [37].
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Figure 6. Predator–prey like oscillations observed in the reduced model with 2 shells and a large
scale mode where the thin solid blue line is #1, the thin dashed green line is #2 and the thick solid
red line is # (divided by 10 to represent in the same graph). The parameters are g = 1.2, q = 0.01,
k = 0.5, α = 1.0, γ = 0.5, νk2g2 = 1.0 and νF = 0.8 for (a) and νF = 0.1 for (b).
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Appendix A. Continuum limit of the H–M system

Description of the continuum limit starts with a selection of a proper variable. The shell
variable #n scales with the square root of the shell area. Thus it makes sense to define instead
a ‘shell averaged’ variable for the continuum limit by dividing the shell variable to the square
root of the shell area:

#(kn) ≡ #n√
2πkn/kn

,

where the shell width /kn is not constant. If we take g = 1 + ε, we can see that
/kn = kn+1 − kn = εkn. Inversely, we can write #n = ε1/2kn#(kn), which in the limit
of small ε becomes #n → ε1/2k#(k). The neighboring shell variables can be written using a
Taylor expansion around k. For example,

#n+1 = ε1/2kn+1#(kn+1) = ε1/2kn(1 + ε)#(kn(1 + ε)).
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For simplicity, we define f (k) = k#(k) in terms of which we can expand each neighboring
shell up to order ε2 as

#n+1 ≈ ε1/2
[
f (k) + εkf ′(k) +

ε2k2

2
f ′′(k)

]
,

#n−1 ≈ ε1/2
[
f (k) − (ε − ε2)kf ′(k) +

ε2k2

2
f ′′(k)

]
,

#n+2 ≈ ε1/2[f (k) + (2ε + ε2)kf ′(k) + 2ε2k2f ′′(k)],

#n−2 ≈ ε1/2[f (k) − (2ε − 3ε2)kf ′(k) + 2ε2k2f ′′(k)].

Substituting these (and g = 1 + ε) into (10) and re-arranging, we obtain

ε1/2 ∂f (k)

∂t
= αε2 k4

1 + k2

{

(2 − 13ε + 49ε2)

[

f (k)2 − 3εkf (k)f ′(k)

+ ε2

(
5
2
k2f (k)f ′′(k) + 4kf (k)f ′(k) + 2k2f ′(k)2

)]

− (4 − 6ε + 10ε2)[f (k)2 + ε2(k2f ′′(k)f (k) − k2f ′(k)2 + kf (k)f ′(k))]

+ (2 + 7ε + 9ε2)

[

f (k)2 + 3εkf (k)f ′(k)

+ ε2

(
5
2
k2f ′′(k) + 2k2f ′(k)2 + kf (k)f ′(k)

)]}

= 6αε4 k4

1 + k2
[8f (k)2 + 11kf (k)f ′(k) + k2f (k)f ′′(k) + 2k2f ′(k)2]

or in terms of #(k):

ε1/2k
∂#(k)

∂t
= 6αε4 k6

1 + k2
[21#(k)2 + 17k#(k)#′(k) + k2#(k)#′′(k) + 2k2#′(k)2]

which can be rearranged in the form of equation (12).
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